Home
Class 12
MATHS
Let z=(-1+sqrt(3)i)/(2), where i=sqrt(-1...

Let `z=(-1+sqrt(3)i)/(2)`, where `i=sqrt(-1)`, and `r, s in {1, 2, 3}`. Let `P=[((-z)^(r),z^(2s)),(z^(2s),z^(r))]` and I be the identity matrix of order 2. Then the total number of ordered pairs (r, s) for which `P^(2)=-I` is ______.

Text Solution

Verified by Experts

The correct Answer is:
A

`because Z = (-1+ sqrt(3)i)/2 = omega`
` rArr omega = 1 and 1 + omega + omega ^(2) = 0 `
Now, `P = [[(-omega)^(r),omega^(2s)],[omega^(2s), omega^(r)]]`
`therefore P^(2) = [[(-omega)^(r),omega^(2s)],[omega^(2s), omega^(r)]] [[(-omega)^(r),omega^(2s)],[omega^(2s), omega^(r)]]`
` =[[omega^(2r)+omega^(4s),omega^(2s)((-omega)^(r)+omega^(r))],[omega^(2s)((-omega)^(r)+omega^(r)), omega^(4s)+omega^(2r)]]`
` =[[omega^(2r)+omega^(4s),omega^(2s)((-omega)^(r)+omega^(r))],[omega^(2s)((-omega)^(r)+omega^(s)), omega^(s)+omega^(2r)]] " " (because omega^(3) = r)`
`because P^(2) = -I= [[-1,0],[0,-1]]` ...(ii)
Form Eqs. (i) and (ii), we get
`omega^(2r) +omega^(s)=-1`
and ` omega^(2s) ((-omega)^(r)+omega^(r))=0`
`rArr r` is odd and `s = r` but not a multiple of 3, Which is possible
`therefore ` only one pair is there.
Promotional Banner

Similar Questions

Explore conceptually related problems

If z=(sqrt(3)-i)/2 , where i=sqrt(-1) , then (i^(101)+z^(101))^(103) equals to

If z(2-2 sqrt(3) i)^(2)=i(sqrt(3)+i)^(4) then arg z=

If z = (sqrt(3+i))/2 (where i = sqrt(-1) ) then (z^101 + i^103)^105 is equal to

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

If w=(z)/(z-(1)/(3)i) and |w|=1 , then z lies on

lf r, s, t are prime numbers and p, q are the positive integers such that their LCM of p,q is r^2 t^4 s^2, then the numbers of ordered pair of (p, q) is

If z_(1), z_(2), z_(3) are three complex numbers in A.P., then they lie on

If z=(-2)/(1+sqrt(3) i) , then the value of arg z is

If (sqrt(3)-i)^(n)=2^(n) , n in Z, then n is a multiple of