Home
Class 12
MATHS
The sum of roots of the equation cos^(-1...

The sum of roots of the equation `cos^(-1)(cosx)=[x],[dot]` denotes the greatest integer function, is `2pi+3` (b) `pi+3` (c) `pi-3` (d) 2`pi-3`

Promotional Banner

Similar Questions

Explore conceptually related problems

Number of solutions of the equation cos[x]=e^(2x-1),x in [0,2pi] , where[.] denotes the greatest integer function is

int_0^(pi) [cot x] dx , when [cdot] denotes the greatest integer function, is equal to :

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

cos^(-1)("cos"(2pi)/3)

The range of the function f(x)=cos[x] , -pi//4 lt x lt pi//4 , where [x] denotes the greatest integer lex , is :

The value of int_x^(2pi) [2 sin x] dx, where [x] represents the greatest integer function, is :

The number of roots of the equation xsinx=1,x in [-2pi,0)uu(0,2pi] is

If [x] denote the greatest integer function , then , int_(0)^(pi//6) (1 - cos 2x)/(1 + cos 2x) d(x - [x]) =

Find the number of real solution of the equation (cos x)^(5)+(sin x)^(3)=1 in the interval [0, 2pi]