Home
Class 12
MATHS
Consider the function f(x)={{:(x-[x]-(1)...

Consider the function `f(x)={{:(x-[x]-(1)/(2),x !inI),(0, "x inI):}` where [.] denotes the fractional integral function and I is the set of integers. Then find `g(x)max.[x^(2),f(x),|x|},-2lexle2.`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D
Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=|x-2|+x is

The function f(x) = (4-x^(2))/(4x-x^(2)) is

The range of the function f(x) = sin [x], -(x)/(4) lt x lt (x)/(4) where [x] denotes the greatest integer le x , is

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

Number of solutions of the equation cos[x]=e^(2x-1),x in [0,2pi] , where[.] denotes the greatest integer function is

Range of the function f(x)=(x^(2)+x+2)/(x^(2)+x+1),x inR is :

The range of the function f(x)=x-[x] , where [x] denotes the greatest integer le x, is :

If f : R rarr R is a function defined by : f(x) = [x] c cos ((2x - 1)/(2))pi, where [x] denotes the greatest integer function, then 'f' is :