Home
Class 12
MATHS
Solve the following equation: \ 3cos^2th...

Solve the following equation: `\ 3cos^2theta-2\ sqrt(3)sinthetacostheta-3sin^2theta=0`

Text Solution

Verified by Experts

The correct Answer is:
`theta = n pi + (pi)/(6)` or `theta = n pi - (pi)/(3)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following (sin theta +cos theta )^(2) +(sin theta -cos theta )^(2)

(3 cos theta+cos 3 theta)/(3 sin theta-sin 3 theta)=

Evaluate the following determinants: (b) |(cos theta, -sin theta),(sin theta, cos theta)| = cos theta (cos theta) - sin theta(-sin theta) = cos^(2) theta + sin^(2) theta = 1

Solve the equation for theta : (cos^(2) theta)/(cot^(2) theta - cos^(2) theta)=3 .

The number of solutions of the paires of equations : 2sin^(2)theta - cos2theta = 0 , 2cos^(2)theta - 3sintheta = 0 in the interval [0,2pi] is :

If sin theta + cos theta = sqrt(3), tan theta + cot theta = ?

The general value of theta which satisfies the equation (cos theta + isin theta) (cos 3theta+ isin3theta)…[cos(2n-1)theta+isin(2n-1)theta]=1 is

Prove that: (sin^(3) theta + cos^(3) theta)/(sin theta + cos theta) = 1-sin theta cos theta

Solve cos theta+cos 7 theta+cos 3theta+cos 5 theta=0 ,

The general value of theta which satisfies the equation (cos theta + i sin theta) (cos 3 theta + I sin 3 theta) ….. {cos(2n - 1) theta + I sin (2n - 1) theta} = 1 is