Home
Class 12
MATHS
The total number of ordered pairs (x , y...

The total number of ordered pairs `(x , y)` satisfying `|x|+|y|=2,sin((pix^2)/3)=1,` is equal to 2 (b) 3 (c) 4 (d) 6

A

1

B

2

C

4

D

3

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of integral pairs (x, y) satisfying the equation 2x^(2)-3xy-2y^(2)=7 is :

Let (S) denotes the number of ordered pairs (x,y) satisfying (1)/(x)+(1)/(y)=(1)/(n),x,y,n in N . Q. sum_(r=1)^(10)S(r) equals

The number of pairs (x,y) which will satisfy the equation x^2-x y+y^2=4(x+y-4) is

Number of ordered pair (x,y) which satisfies the relation (x^(4)+1)/(8x^(2))=sin^(2)y*cos^(2) y , where y in [0,2pi]

The total number of common tangentss of x^(2)+y^(2) -6x-8y+9=0 and x^(2)+y^(2)=1 is

The number of solutions of the equation sin((pix)/(2sqrt3))=x^2-2sqrt3x+4

Find all number of pairs x,y that satisfy the equation tan^(4) x + tan^(4)y+2 cot^(2)x * cot^(2) y=3+ sin^(2)(x+y) .

Find the number solution are ordered pair (x,y) of the equation 2^(sec^(2)x)+2^("cosec"^(2)y)=2cos^(2)x(1-cos^(2)y) in [0,2pi]

If y = (3x+5)e^(-2x) , then y satisfies

The eccentricity of the conjugate hyperbola of the hyperbola x^2-3y^2=1 is (a) 2 (b) 2sqrt(3) (c) 4 (d) 4/5