Home
Class 12
MATHS
Solve the equation: cos^2[pi/4(sinx+sqrt...

Solve the equation: `cos^2[pi/4(sinx+sqrt(2)cos^2x)]-tan^2[x+pi/4tan^2x]=1`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : cos((pi)/4+x)+cos((pi)/4-x)=sqrt(2)cosx

Solve the equation sin x + cos x -2sqrt2 sin x cos x =0

Solve the equation 5 sin^(2)x-7 sinx cos x + 16 cos^(2)x=4

Solve the equation (tan x )^( cos^(2) x)= ( cot x )^( sin x )

Solve the equation ( cos x - sin x )(2 tan x +(1)/( cos x ))+2 =0

Solution of the equation cos^2x(dy)/(dx)-(tan2x)y=cos^4x , where |x|< pi/4 and y(pi/6)=(3sqrt(3))/8 is

Solve the system of equations tan^2 x + cot^(2) x = 2cos^(2)y cos^(2)y+sin^(2)z=1

Find the number of solution(s) of the equation cos (pi sqrt(x)) cos (pi sqrt(x-4))=1 .

Find the number of solution of the equations sin^3 x cos x + sin^(2) x* cos^(2) x+sinx * cos^(3) x=1 , when x in[0,2pi]

int_(-pi/2)^(pi/2) (sqrt(1+cos2x)/(sqrt2)) dx =