Home
Class 12
MATHS
For 0 lt theta lt pi/2 , the solution (s...

For `0 lt theta lt pi/2` , the solution (s) of `sum_(m=1)^6cos e c(theta+((m-1)pi/4)) cos e c(theta+(mpi)/4) = 4sqrt(2) is(a r e)` (a) `pi/4` (b) `pi/6` (c) `pi/(12)` (d) `(5pi)/(12)`

A

`(pi)/(4)`

B

`(pi)/6`

C

`(pi)/(12)`

D

`(5pi)/(12)`

Text Solution

Verified by Experts

The correct Answer is:
C, D
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : cos((pi)/4+x)+cos((pi)/4-x)=sqrt(2)cosx

cos ((3pi)/( 4) + x) - cos((3pi)/( 4) -x) =- sqrt2 sin x

The solution set of sin^(2)theta=costheta+(1)/(4) , in the interval 0lethetale2pi , is

If cosec theta-cot theta=(1)/(2), 0 lt theta lt(pi)/(2) then cos theta=

If 0 lt theta lt (pi)/(2) and tan theta+sec theta=p then sec theta=

The number of solutions of cot(5pi sin theta )=tan (5 pi cos theta ), AA theta in (0,2pi) is

If tan(picos theta) = cot(pisin theta) , then cos(theta - pi/4) is :

In the interval [-pi/2,pi/2] the equation log_(sin theta)(cos 2 theta)=2 has

Solve cos theta * cos 2 theta * cos 3 theta = (1)/( 4), 0 le theta le pi