Home
Class 12
MATHS
Find all possible triplets (x,y,z) such ...

Find all possible triplets (x,y,z) such that `(x+y)+(y+2z) cos 2 theta +(z-x) sin^(2) theta =0` , for all ` theta `.

Text Solution

Verified by Experts

The correct Answer is:
there are infinite number of triplets
Promotional Banner

Similar Questions

Explore conceptually related problems

x = a cos theta, y = b sin theta .

Given A=sin ^(2) theta+cos ^(4) theta then for all real theta

x = cos theta - cos 2 theta, y = sin theta - sin 2 theta . then find dy/dx

Find (dy)/(dx), " if "x= a cos theta, y= a sin theta .

If f(x)=|{:( sin^2 theta , cos^(2) theta , x),(cos^(2) theta , x , sin^(2) theta ),( x , sin^(2) theta , cos^2 theta ):}| theta in (0,pi//2), then roots of f(x)=0 are

Find (dy)/(dx)," if "x= a(theta+ sin theta), y= a(1- cos theta) .

If x+i y=(1)/(1+cos theta+i sin theta) then x^(2)

If x=a cos ^(3) theta and y = a sin^(3) theta then (dy)/( dx) =

The locus of the point x=a+b cos theta y=b+a sin theta is