Home
Class 12
MATHS
If 0 le x le 2pi, then 2^(cosec^(2) x) ...

If `0 le x le 2pi`, then `2^(cosec^(2) x) sqrt(1/2 y^(2) -y+1) le sqrt(2)`

Text Solution

Verified by Experts

The correct Answer is:
`x = (pi)/(2), (3pi)/(2)` and y = 1
Promotional Banner

Similar Questions

Explore conceptually related problems

If | x + 2 | le 9 , then :

If |x-2|le 1 , then

If |x -2| le 1 , then

The function f(x) = (x^(2))/(a) , if 0 le x le 1 =a, if 1 le x lt sqrt(2) = (2b^(2) - 4b)/(x^(2)) , if sqrt(2) le x lt oo is continuous for 0 le x lt oo , then the most suitable values for a and b are :

Given 0 le x le 1/2 then the value of tan[sin^(-1){(x)/(sqrt(2))+(sqrt(1-x^(2)))/(sqrt(2))}-sin^(-1)x] is

Given 0 le x le (1)/(2) then the value of tan[sin^(-1){(x)/(sqrt(2)) + sqrt(1-x^(2))/(sqrt(2))}-sin^(-1)x] is

solve |x-1|le2 .

(x)/(x^(2)-5x+9)le1.

Let f(x) = [{:((x^(2))/(a),0 le x lt 1),(a,1 le x lt sqrt(2)),((2b^(2) - 4b)/(x^(2)),sqrt(2) le x):} be continuous in [0, oo) , then the most suitable values of a and b are :

If sqrt(1 -x^2) + sqrt(1 - y^2) = a(x - y) prove that (dy)/(dx) = (sqrt(1 - y^2))/(sqrt(1-x^2)) .