Home
Class 12
MATHS
If xsina+ysin2a+zsin3a=sin4a, xsinb+ysi...

If `xsina+ysin2a+zsin3a=sin4a`, `xsinb+ysin2b+zsin3b=sin4b`, `xsinc+ysin2c+zsin3c=sin4c`, then the roots of the equation `t^3-(z/2)t^2-((y+2)/4)t+((z-x)/8)=0,a , b , c ,!=npi,` are (a)`sina ,sinb ,sinc` (b) `cosa ,cosb ,cosc` (c)`sin2a ,sin2b ,sin2c` (d) `cos2a ,cos2bcos2c`

A

sin a , sin b , sin c

B

cos a, cos b , cos c

C

sin 2a , sin 2b , sin 2c

D

cos 2a , cos 2b , cos 2c

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The roots of the quadratic equation (a + b-2c)x^2+ (2a-b-c) x + (a-2b + c) = 0 are

If the roots of the equation x^(2)-b x+c=0 be two eanseeutive integers then b^(2)-4 a c=

sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)

If a, b,c , d are the roots of the equation : x^(4) + 2x^(3) + 3x^(2) + 4x + 5 = 0 , then 1 + a^(2) + b^(2) + c^(2) + d^(2) is equal to :

If A+B+C=pi , Prove that sin2A+sin2B+sin2C=4sinA.sinB.sinC

cos^(2)A+cos^(2)B-cos^(2)C=1-2sinA sinB cosC

(sin3A)/(sinA)-(cos3A)/(cosA)=2

If the equations : x^(2) + 2x + 3 = 0 and ax^(2) + bx + c =0 a, b,c in R, Have a common root, then a: b : c is :