Home
Class 12
MATHS
The value of the determinants |{:(1,a,a^...

The value of the determinants `|{:(1,a,a^(2)),(cos(n-1)x,cos nx , cos(n+1)x),(sin(n-1)x , sin nx , sin(n+1)x):}|` is zero if

A

` x = n pi `

B

`x = n pi //2 `

C

`x=(2n+1)pi//2`

D

`x=(1+a^(2))/(2a)n in I `

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the determinant : Delta=|(a^2,a,1),(cosnx,cos(n+1)x,cos(n+2)x),(sinnx,sin(n+1)x,sin(n+2)x)| is : in dependent is :

int(cos^(n-1)x)/(sin^(n+1)x)dx, n ne 0 is

int (cos^(n-1))/( sin^(n+1)) dx , n ne 0 is :

int(cos^(n-1)x)/(sin^(n+1)x)dx,n ne 0 is :

If cos^(-1) x > sin^(-1) x , then :

The value of the integral int_0^pi (x sin^(2n) x)/(sin^(2n) x + cos^(2n) x)dx is :

d/dx {cos^(-1)x + sin^(-1)x}=

int (sin^(-1)x - cos^(-1)x)/(sin^(-1)x + cos^(-1)x)dx =

If y=sin^(n)x cos n x, then (dy)/(dx) is

If sin^(-1) x +cos^(-1) (1-x)=sin^(-1) (-x) , then x satisfies :