Home
Class 12
MATHS
The equation sin x + sin y + sin z =-3 "...

The equation `sin x + sin y + sin z =-3 "for " 0 le x le 2pi , 0 le y le 2pi, 0 le z le 2pi` has

A

one solution

B

two sets of solutions

C

four sets of solutions

D

no solutions

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The equation sin x + sin y + sin z =-3 for 0 le x le 2pi , 0 le y le 2pi , o le z le 2pi , has

If 5 le x le 8 , then :

Find the area of the region {(x,y) : 0 le y le x^(2), 0 le y le x + 2, 0 le x le 3} .

alpha is a root of equation ( 2 sin x - cos x ) (1+ cos x)=sin^2 x , beta is a root of the equation 3 cos ^2x - 10 cos x +3 =0 and gamma is a root of the equation 1-sin2 x = cos x- sin x : 0 le alpha , beta, gamma , le pi//2 sin alpha + sin beta + sin gamma can be equal to

alpha is a root of equation ( 2 sin x - cos x ) (1+ cos x)=sin^2 x , beta is a root of the equation 3 cos^2x - 10 cos x +3 =0 and gamma is a root of the equation 1-sin2 x = cos x- sin x : 0 le alpha , beta, gamma , le pi//2 cos alpha + cos beta + cos gamma can be equal to

If cos x- sin x ge 1 and 0 le x le 2pi , then find the solution set for x .

If 0 lt x lt 2 pi and |cos x| le sin x , then

Find the intervals in the function f is given by f(x) = sin x + cos x, 0 le x le 2pi is strictly increasing or strictly decreasing.