Home
Class 12
MATHS
Let x, y, z be elements from interval [...

Let x, y, z be elements from interval `[0,2pi] ` satisfying the inequality ` (4+ sin 4 x )(2+ cot^(2) y)(1+ sin^(4) z) le 12 sin^(2) z ` , then

A

the number of solution is 5

B

the number of solution is 8

C

the number of solution is 9

D

the number of solution is 2

Text Solution

Verified by Experts

The correct Answer is:
C, D
Promotional Banner

Similar Questions

Explore conceptually related problems

If x+y=(4pi)/(3) and sin x = 2 sin y , then

If (cos^(2)x + 1/(cos^(2) x)) (1+tan^(2) 2y) (3+ sin 3z)=4 , then

Find all number of pairs x,y that satisfy the equation tan^(4) x + tan^(4)y+2 cot^(2)x * cot^(2) y=3+ sin^(2)(x+y) .

The minimum vallue of f(x) = sin^(4)x + cos^(4)x, 0 le x le pi/2 is

Solve the system of equations tan^2 x + cot^(2) x = 2cos^(2)y cos^(2)y+sin^(2)z=1

(cos x- cos y) ^(2) + (sin x - sin y) ^(2) =4 sin ^(2) "" ( x-y)/(2)

Find the least positive value of x satisfying (sin^2 2x+4sin^4x-4sin^2xcos^2x)/(4-sin^2 2x- 4 sin^2x)=1/9

Number of solutions of the equation sin^(4) x-cos^(2)x sin x + 2 sin^(2) x+sin x=0 in 0 le x le 3pi is ________.

Find the number of solutions of sin^(2) x cos^(2)x=1+cos^(2)x+sin^(4) x in the interval [0,pi]

(cos x + cos y ) ^(2) + (sin x - sin y ) ^(2) = 4 cos ^(2) ""(x + y )/( 2)