Home
Class 12
MATHS
Consider the equation 5 sin^2 x + 3 sin ...

Consider the equation `5 sin^2 x + 3 sin x cos x - 3 cos^2 x =2 `.......... (i)
`sin^2 x - cos 2 x =2-sin 2 x `........... (ii)
The number of solutions common to (i) and (ii) is 0 1 finite infinite

A

0

B

1

C

finite

D

infinite

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the equation 5 sin^2 x + 3 sin x cos x - 3 cos^2 x =2 .......... (i) sin^2 x - cos 2 x =2-sin 2 x ........... (ii) If tan alpha , tan beta satisfy (i) and cos gamma , cos delta satisfy (ii) , then tan alpha * tan beta + cos gamma + cos delta can be equal to

Solve the equation 5 sin^(2)x-7 sinx cos x + 16 cos^(2)x=4

Consider the equation 5 sin^2 x + 3 sin x cos x - 3 cos^2 x =2 .......... (i) sin^2 x - cos 2 x =2-sin 2 x ........... (ii) If alpha is a root (i) and beta is a root of (ii), then tan alpha + tan beta can be equal to

Solve 2 sin^(2) x-5 sin x cos x -8 cos^(2) x=-2 .

Solve sin 3x + cos 2 x =-2

Solve the equation sin x + cos x -2sqrt2 sin x cos x =0

(sin 3x + sin x ) sin x + (cos 3x - cos x) cos x =0

Solve sin 5 x = cos 2 x .

The number of solutions for the equation sin2x+cos 4x=2 is