Home
Class 12
MATHS
The equation sin^4x+cos^4x+sin2x+alpha=0...

The equation `sin^4x+cos^4x+sin2x+alpha=0` is solvable for `-5/2lt=alphalt=1/2` (b) `-3lt=alpha<1`(c) `-3/2lt=alphalt=1/2` (d) `-1lt=alphalt=1`

Text Solution

Verified by Experts

The correct Answer is:
` alpha in [-(3)/(2),(1)/(2)] and x=(n x )/(2)+((-1)^(n))/(2)sin^(-1)(1-sqrt(2 alpha +3))`
Promotional Banner

Similar Questions

Explore conceptually related problems

alpha is a root of equation ( 2 sin x - cos x ) (1+ cos x)=sin^2 x , beta is a root of the equation 3 cos ^2x - 10 cos x +3 =0 and gamma is a root of the equation 1-sin2 x = cos x- sin x : 0 le alpha , beta, gamma , le pi//2 sin alpha + sin beta + sin gamma can be equal to

alpha is a root of equation ( 2 sin x - cos x ) (1+ cos x)=sin^2 x , beta is a root of the equation 3 cos^2x - 10 cos x +3 =0 and gamma is a root of the equation 1-sin2 x = cos x- sin x : 0 le alpha , beta, gamma , le pi//2 cos alpha + cos beta + cos gamma can be equal to

The solution of the equation sin 2x + sin 4x = 2 sin 3x is

Prove that sin^(4) alpha + cos^(4) alpha + 2 sin^(2) alpha cos^(2) alpha = 1 .

Find the range of y such that the equation in x , y + cos x = sin x has a real solutions . For y=1 , find x such that 0 lt x lt 2 pi

The number of solutions for the equation sin2x+cos 4x=2 is

Number of solutions of the equation sin^(4) x-cos^(2)x sin x + 2 sin^(2) x+sin x=0 in 0 le x le 3pi is ________.

cos ^(2) 2x -cos ^(2) 6x = sin 4x sin 8x

If sin 3 alpha =4 sin alpha sin (x+alpha ) sin(x-alpha ) , then

If 0 lt=a lt=3 , 0 lt=b lt=3 and the equation : x^(2) + 4 + 3cos(ax + b)=2x has at least one solution, then the value of a + b is :