Home
Class 12
MATHS
Cosider the equation int(0)^(x) (t^(2)-8...

Cosider the equation `int_(0)^(x) (t^(2)-8t+13)dt= x sin (a//x)`
One of the solutions of `[y- cos a] lt x`, where x and a are values that satisfy the given equation, is

Text Solution

Verified by Experts

The correct Answer is:
`a= 3pi(4n+1)`
Promotional Banner

Similar Questions

Explore conceptually related problems

x = sin t, y = cos 2 t .

If int_0^x f(t) dt = x + int_x^l tf (t) dt , then the value of f(1) is :

The function L(x) = int_1^x (dt)/t satisfies the equation:

If int_(sin x)^(1) t^2 f(t) dt = 1 - sin x , then the value of f(1/(sqrt3)) is :

If f(x) = int_(2x)^(sinx) cos (t^(3)) dt then f '(x)

The value of lim_(x rarr 0) (int_(0)^(x^(2))cos t^(2)dt)/(x sin x) is :

The value of lim_(x rarr 0) (int_(0)^(x^(2))sec^(2)t dt)/(x sin x) is :