Home
Class 12
MATHS
The positive integer value of n >3 satis...

The positive integer value of `n >3` satisfying the equation `1/(sin(pi/n))=1/(sin((2pi)/n))+1/(sin((3pi)/n))i s`

Text Solution

Verified by Experts

The correct Answer is:
7
Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(-1)("sin"(pi)/4)

The smallest positive integral value of ' n ' such that [(1+sin (pi)/(8)+i cos (pi)/(8))(1+sin (pi)/(8)-i cos (pi)/(8))]^(n) is purely imaginary is

The smallest positive integral value of n such that [(1+"sin"pi/8+i"cos"(pi)/8)/(1+"sin"(pi)/8-i"cos"(pi)/8)]^(n) is purely imaginary is n=

The value of sin (pi)/(7)+sin (2 pi)/(7)+sin (3 pi)/(7) is

Evaluate sin^(-1)(sin ((2pi)/3))

The number of positive integers satisfying the inequality C(n+1,n-2) - C(n+1,n-1)<=100 is

Find the amplitude if sin.(pi)/(5)+i(1-cos.(pi)/(5))

What is the value of cos^(-1)(cos((2pi)/3))+sin^(-1)(sin((2pi)/3)) ?

lim_(n rarr oo) 1/n[sin(pi/(2n))+sin(pi/n)+sin((3pi)/2n)+........+sin(pi/2)] =

The number of positive integers satisfying the inequality : ""^(n+1)C_(n-2)-""^(n+1)C_(n-1)le100 is :