Home
Class 12
MATHS
The number of solutions of the paires of...

The number of solutions of the paires of equations : `2sin^(2)theta - cos2theta = 0` , `2cos^(2)theta - 3sintheta = 0` in the interval `[0,2pi]` is :

A

0

B

1

C

2

D

4

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of solution of the equation 5 sec theta -13=12 tan theta in [0,2pi] is

(sin^(2) theta)/(1-cos theta)-(cos^(2) theta)/(1-sin theta)=cos theta-sin theta

|[4 sin ^2 theta, cos 2 theta],[ -cos 2 theta,cos ^2 theta]| =

If tan theta = 3/4, cos^(2) theta - sin^(2) theta = _______

Solve sin^(2) theta-cos theta=1/4, 0 le theta le 2pi .

( sin theta - 2 sin ^ 3 theta ) / (2 cos ^ 3 theta - cos theta ) = tan theta

The number of solutions of cot(5pi sin theta )=tan (5 pi cos theta ), AA theta in (0,2pi) is

Solve the equation for theta : (cos^(2) theta)/(cot^(2) theta - cos^(2) theta)=3 .

The angle between the pair of straight lines y^(2)sin^(2) theta -xy sin^(2)theta +x^(2)(cos^(2)theta-1) =0 is