Home
Class 12
MATHS
Find the value of 1+i^(2)+i^(4)+i^(6)+....

Find the value of `1+i^(2)+i^(4)+i^(6)+...+i^(2n),`
where`i=sqrt(-1)` and `n in N`.

Promotional Banner

Similar Questions

Explore conceptually related problems

1+i^(2)+i^(4)+i^(6)+... .+i^(2 n)=

The value of sum_(k=1)^(13)(i^(n)+i^(n+1)) , where i=sqrt(-1) equals :

The value of ((1+i)/(1-i))^(4 n)=

i^(2)+i^(4)+i^(6)+ldots . .(2 n+1) terms =

The value of sum_(n=0)^(100)i^(n!) equals (where i=sqrt(-1))

The value of the sume sum_(n=1)^(13) ( i^(n) + i^(n+1)) , where i = sqrt( -1) , equals :

The value of the sum sum_(n=1) ^(13) (i^(n)+i^(n+1)) , where i = sqrt( - 1) ,equals :

Find he value of sum_(r=1)^(4n+7)\ i^r where, i=sqrt(- 1).