Home
Class 12
MATHS
The value of sum(k=1)^(13)(i^(n)+i^(n+1)...

The value of `sum_(k=1)^(13)(i^(n)+i^(n+1))`, where `i=sqrt(-1)` equals :

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the sume sum_(n=1)^(13) ( i^(n) + i^(n+1)) , where i = sqrt( -1) , equals :

The value of the sum sum_(n=1) ^(13) (i^(n)+i^(n+1)) , where i = sqrt( - 1) ,equals :

The value of sum_(n=0)^(100)i^(n!) equals (where i=sqrt(-1))

Find he value of sum_(r=1)^(4n+7)\ i^r where, i=sqrt(- 1).

The value of ((1+i)/(1-i))^(4 n)=

Find the value of 1+i^(2)+i^(4)+i^(6)+...+i^(2n), where i=sqrt(-1) and n in N .

If sum_(i=1)^(2n) sin^(-1) x_i=npi , then sum_(i=1)^(2n) x_i equals :

The amplitude of (1+i)/(1+sqrt(3) i) is

Find the least positive integral value of n, for which ((1-i)/(1+i))^n , where i=sqrt(-1), is purely imaginary with positive imaginary part.

If n is a positive integer and C_(k)=""^(n)C_(k) , then the value of sum_(k=1)^(n)k^(3)((C_(k))/(C_(k-1)))^(2) equals: