Home
Class 12
MATHS
The value of sum(n=0)^(100)i^(n!) equals...

The value of `sum_(n=0)^(100)i^(n!)` equals (where `i=sqrt(-1))`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(n=1)^(10) n is:

The value of sum_(k=1)^(13)(i^(n)+i^(n+1)) , where i=sqrt(-1) equals :

Find he value of sum_(r=1)^(4n+7)\ i^r where, i=sqrt(- 1).

The value of the sume sum_(n=1)^(13) ( i^(n) + i^(n+1)) , where i = sqrt( -1) , equals :

The value of ((1+i)/(1-i))^(4 n)=

The value of the sum sum_(n=1) ^(13) (i^(n)+i^(n+1)) , where i = sqrt( - 1) ,equals :

Find the value of 1+i^(2)+i^(4)+i^(6)+...+i^(2n), where i=sqrt(-1) and n in N .

Find the least positive integral value of n, for which ((1-i)/(1+i))^n , where i=sqrt(-1), is purely imaginary with positive imaginary part.

If x^(2)-x+1=0 then the value of sum_(n=1)^(5)(x^(n)+(1)/(x^(n)))^(2) is

The value of (a+i b)^(m / n)+(a-i b)^(m / n) is equal to