Home
Class 12
MATHS
Find he value of sum(r=1)^(4n+7)\ i^r wh...

Find he value of `sum_(r=1)^(4n+7)\ i^r` where, `i=sqrt(- 1).`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(n=0)^(100)i^(n!) equals (where i=sqrt(-1))

Evaluate sum_(r=1)^(n)rxxr!

The value of sum_(k=1)^(13)(i^(n)+i^(n+1)) , where i=sqrt(-1) equals :

The value of sum_(r=1)^(n)(nP_(r))/(r!)=

If sum_(i=1)^(n) cos theta_(i)=n , then the value of sum_(i=1)^(n) sin theta_(i) .

Find the general value of log_(2)(5i), where i=sqrt(-1).

Find the value of 1+i^(2)+i^(4)+i^(6)+...+i^(2n), where i=sqrt(-1) and n in N .

The value of ((1+i)/(1-i))^(4 n)=

The value of the sum sum_(n=1) ^(13) (i^(n)+i^(n+1)) , where i = sqrt( - 1) ,equals :

The value of sum_(r=1)^(n) log ((a^(r ))/( b^(r-1))) is :