Home
Class 12
MATHS
Find the arguments of z(1)=5+5i,z(2)=-4+...

Find the arguments of `z_(1)=5+5i,z_(2)=-4+4i,z_(3)=-3-3i and z_(4)=2-2i,`
where `i=sqrt(-1).`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the principal value of the arguments of z_(1)=2+2i,z_(2)=-3+3i,z_(3)=-4-4iand z_(4)=5-5i,where i=sqrt(-1).

Find the gratest and the least values of |z_(1)+z_(2)|, if z_(1)=24+7iand |z_(2)|=6," where "i=sqrt(-1)

If z(2-i)=3+I,z^(20) =

Find the multiplicative inverse of z= 2-3i

The argument of (1-i sqrt(3))/(1+i sqrt(3))=

Find the multiplicative inverse of z= 4 -3i

Find the multiplicative inverse of z= 6-3i

Find the square roots of the following (i) 4+3i (ii) -5+12i (iii) 8-15i (iv) 7-24i(" where " , i=sqrt(-1))

For all complex numbers z_(1), z_(2) satisfying |z_(1)|=12 and |z_(2)-3-4 i|=5 , the minimum value of |z_(1)-z_(2)| is

If z_(1)=8+4 i, z_(2)=6+4 i and arg ((z-z_(1))/(z-z_(2)))=(pi)/(4) then z satisfies