Home
Class 12
MATHS
If arg (z(1))=(17pi)/18 and arg (z(2))=(...

If arg `(z_(1))=(17pi)/18` and arg `(z_(2))=(7pi)/18,` find
the principal argument of `z_(1)z_(2)` and` (z_(1)//z_(2)).`

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_(1) and z_(2) are conjugate to each other , find the principal argument of (-z_(1)z_(2)) .

If |z_(1)|=|z_(2)| and arg (z_(1)//z_(2))=pi, then find z_(1)+z_(2) .

If z ne 0 and arg z=(pi)/(4) , then

If |z_(1)+z_(2)|=|z_(1)-z_(2)| , then the difference of the arguments of z_(1) and z_(2) is

Let z_(1)=2-i, z_(2)=-2+i . Find the imaginary part of (1)/(z_(1)bar(z_(2)))

If |z_(1)|=|z_(2)| and arg z_(1) + arg z_(2)=0 then

If z=-1 , the principal value of arg. (z^(2//3)) is equal to :

If |z_(1)-1|lt2,|z_(2)-2|lt1 , then |z_(1)+z_(2)|

If z_(1), z_(2) are two complex numbers such that Im(z_(1)+z_(2))=0 and Im(z_(1) z_(2))=0 , then

If z_(1)=sqrt(3)+i sqrt(3) and z_(2)=sqrt(3)+i then the complex number ((z_(1))/(z_(2))) lies in the