Home
Class 12
MATHS
If |z(1)|=|z(2)| and arg (z(1)//z(2))=pi...

If `|z_(1)|=|z_(2)|` and arg `(z_(1)//z_(2))=pi,` then
find `z_(1)+z_(2)` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z_(1)|=|z_(2)| and arg z_(1) + arg z_(2)=0 then

If |z_(1)|=|z_(2)|=|z_(3)|=1 and z_(1)+z_(2)+z_(3)=0 , then z_(1),z_(2),z_(3) are vertices of

If z_(1)=8+4 i, z_(2)=6+4 i and arg ((z-z_(1))/(z-z_(2)))=(pi)/(4) then z satisfies

If |z_(1)| = 1, |z_(2)| =2, |z_(3)|=3, and |9z_(1)z_(2) + 4z_(1)z_(3)+ z_(2)z_(3)|= 12 , then find the value of |z_(1) + z_(2) + z_(3)| .

If |z_(1)-1|lt2,|z_(2)-2|lt1 , then |z_(1)+z_(2)|

If |z_(1)|=|z_(2)|=|z_(3)|=|z_(4)| , then the points representing z_(1),z_(2),z_(3),z_(4) are :

If z ne 0 and arg z=(pi)/(4) , then

If z_(1) and z_(2) are two non-zero complex numbers such that |z_(1)+z_(2)|=|z_(1)|+|z_(2)| , then arg. z_(1)- arg. z_(2) equals :

If z_(1),z_(2),z_(3) are complex numbers such that : |z_(1)|=|z_(2)|=|z_(3)|=|(1)/(z_(1))+(1)/(z_(2))+(1)/(z_(3))|=1 , then |z_(1)+z_(2)+z_(3)| is equal to

If z_(1),z_(2) are two complex numbers satisfying the equation : |(z_(1)-z_(2))/(z_(1)+z_(2))|=1 , then (z_(1))/(z_(2)) is a number which is