Home
Class 12
MATHS
If |z-2+i|le2, find the greatest and lea...

If `|z-2+i|le2,` find the greatest and least value of|z|, where `i=sqrt(-1).`

Promotional Banner

Similar Questions

Explore conceptually related problems

1. If |z-2+i|≤ 2 then find the greatest and least value of | z|

Find the general value of log_(2)(5i), where i=sqrt(-1).

If |z|ge3, then determine the least value of |z+(1)/(z)| .

If |z+(4)/(z)|=2, find the maximum and minimum values of |z|.

Find he value of sum_(r=1)^(4n+7)\ i^r where, i=sqrt(- 1).

Find the gratest and the least values of |z_(1)+z_(2)|, if z_(1)=24+7iand |z_(2)|=6," where "i=sqrt(-1)

If z is any complex number such that |z+4|lt=3, then find the greatest value of |z+1|dot

If ((1+i)/(1-i))^(2m)=1 , then find the least integral value of m.

If sum_(i=1)^(n)a_(i)^(2)=lambda, AAa_(i)ge0 and if greatest and least values of (sum_(i=1)^(n)a_(i))^(2) are lambda_(1) and lambda_(2) respectively, then (lambda_(1)-lambda_(2)) is

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is