Home
Class 12
MATHS
If |z|=1 and w=(z-1)/(z+1) (where z ne -...

If `|z|=1` and `w=(z-1)/(z+1)` (where `z ne -1`), then `Re (w)` is :

A

0

B

`(-1)/(|z+1|^(2))`

C

`|(z)/(z=1)|*(1)/(|z+1|^(2))`

D

`(sqrt(2))/(|z+1|^(2))`

Text Solution

Verified by Experts

The correct Answer is:
a
Promotional Banner

Similar Questions

Explore conceptually related problems

If |z|=k and w=(z-k)/(z+k) , then Re (w)=

If f(z)=(7-z)/(1-z^(2)), where z=1+2 i, then |f(z)| is

The complex number z is such that |z|=1 , z ne -1 and w=(z-1)/(z+1) . Then real part of w is

If w=(z)/(z-(1)/(3)i) and |w|=1 , then z lies on

If (z-1)/(z+1) is purely imaginary, then |z|=

The locus of the point z satisfying arg ((z-1)/(z+1))=k , (where k is non zero) is

If |z|=1 and z ne pm 1 , then all the values of (z)/(1-z^(2)) lie on

If z ne 1 and (z^(2))/(z-1) is real, then the point represented by the complex number z lies

If the equation a (y+z) = x, b (z+x) =y and c (x+y) = z, where a ne -1, be ne -1 , c ne - 1 , admit of non - trivial solutions , then : (1+a)^(-1) + (1+b)^(-1) +(1+c)^(-1) is

If z ne 0 and Re z=0 then