Home
Class 12
MATHS
Let z and omega be complex numbers. If R...

Let `z and omega` be complex numbers. If `Re(z) = |z-2|, Re(omega) = |omega - 2| and arg(z - omega) = pi/3`, then the value of `Im(z+w)`, is

A

`(1)/sqrt(3)`

B

`(2)/sqrt(3)`

C

`sqrt(3)`

D

`(4)/(sqrt(3))`

Text Solution

Verified by Experts

The correct Answer is:
d
Promotional Banner

Similar Questions

Explore conceptually related problems

If z=(-2)/(1+sqrt(3) i) , then the value of arg z is

If z ne 0 and arg z=(pi)/(4) , then

If Im((z-1)/(2 z+1))=-4 then the locus of z is

Let z and w be two non-zero complex numbers such that |z|=|w| and arg. (z)+ arg. (w)=pi . Then z equals :

If z and w are two non-zero complex numbers such that |zw|=1 and arg(z)-arg(w)=(pi)/(2) , then barzw is equal to

If omega=(z)/(z-(i)(3)) and |omega|=1 , the z lies on

Let z be a complex number such that |z| = 4 and arg (z) = 5pi//6, then z =

If x=a+b, y=a omega+b omega^(2), z=a omega^(2)+b omega , then x y z=

If omega is a complex cube root of unity , then the value of omega^(99) + omega^(100) + omega^(101) is

If |z|=k and w=(z-k)/(z+k) , then Re (w)=