Home
Class 12
MATHS
If |z-2i|lesqrt(2), where i=sqrt(-1), th...

If `|z-2i|lesqrt(2),` where `i=sqrt(-1),` then the maximum value of `|3-i(z-1)|,` is

A

`sqrt(2)`

B

`2sqrt(2)`

C

`2+sqrt(2)`

D

`3+2sqrt(2)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If |z-(4)/(z)|=2 then the maximum value of |z| is

If |z+4| le 3 , then the maximum value of |z+1| is

If a=(1+i)/sqrt2," where "i=sqrt(-1), then find the value of a^(1929) .

If z=(-2)/(1+sqrt(3) i) , then the value of arg z is

If z=(sqrt(3)+i)/(sqrt(3)-i) , then the fundamental amplitude of z is :

If alpha and beta are the complex roots of the equation (1+i)x^(2)+(1-i)x-2i=o where i=sqrt(-1) , the value of |alpha-beta|^(2) is

If z(2-2 sqrt(3) i)^(2)=i(sqrt(3)+i)^(4) then arg z=

Express (1+i)^(-1) ,where, i= sqrt(-1) in the form A+iB.

If z=(sqrt(3)-i)/2 , where i=sqrt(-1) , then (i^(101)+z^(101))^(103) equals to

If |(z+i)/(z-i)|=sqrt(3) , then the radius of the circle is