Home
Class 12
MATHS
If |z-iRe(z)|=|z-Im(z)|, then prove that...

If `|z-iRe(z)|=|z-Im(z)|,` then prove that z
lies on the bisectors of the quadrants, `" where "i=sqrt(-1).`

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z+bar(z)|+|z-bar(z)|=8 then z lies on

If |z^(2)-1|=|z|^(2)+1 , then z lies on :

If omega=(z)/(z-(i)(3)) and |omega|=1 , the z lies on

If |(z+i)/(z-i)|=sqrt(3) , then the radius of the circle is

If |z_(1)+z_(2)|=|z_(1)-z_(2)| , then the difference of the arguments of z_(1) and z_(2) is

If w=(z)/(z-(1)/(3)i) and |w|=1 , then z lies on

If |z|=1 and w=(z-1)/(z+1) (where z ne -1 ), then Re (w) is :

If z=x+ iy lies in the third quadrant then, (barz)/(z) also lies in the third quadrant if

Find the gratest and the least values of |z_(1)+z_(2)|, if z_(1)=24+7iand |z_(2)|=6," where "i=sqrt(-1)

If |z_(1)|=|z_(2)| and arg z_(1) + arg z_(2)=0 then