Home
Class 12
MATHS
If(1+i)^(2n)+(1-i)^(2n)=-2^(n+1)(where,i...

If`(1+i)^(2n)+(1-i)^(2n)=-2^(n+1)(where,i=sqrt(-1)` for all those n, which are

A

even

B

odd

C

multiple of 3

D

None of these

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

(1+i)^(2 n)+(1-i)^(2 n), n in z is

The value of the sume sum_(n=1)^(13) ( i^(n) + i^(n+1)) , where i = sqrt( -1) , equals :

The value of the sum sum_(n=1) ^(13) (i^(n)+i^(n+1)) , where i = sqrt( - 1) ,equals :

Find the value of 1+i^(2)+i^(4)+i^(6)+...+i^(2n), where i=sqrt(-1) and n in N .

The value of sum_(k=1)^(13)(i^(n)+i^(n+1)) , where i=sqrt(-1) equals :

Find the least positive integral value of n, for which ((1-i)/(1+i))^n , where i=sqrt(-1), is purely imaginary with positive imaginary part.

Find he value of sum_(r=1)^(4n+7)\ i^r where, i=sqrt(- 1).

If A^(n) = 0 , then evaluate (i) I+A+A^(2)+A^(3)+…+A^(n-1) (ii) I-A + A^(2) - A^(3) +... + (-1) ^(n-1) for odd 'n' where I is the identity matrix having the same order of A.

The value of sum_(n=0)^(100)i^(n!) equals (where i=sqrt(-1))