Home
Class 12
MATHS
If i=sqrt(-1), the number of values of i...

If `i=sqrt(-1),` the number of values of `i^(-n)` for a different `n inI ` is

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of ((1+i)/(1-i))^(4 n)=

Let f(n) denotes the number of different ways, the positive integer n ca be expressed as the sum of the 1's and 2's. for example, f(4)=5. i.e., 4=1+1+1+1 =1+1+2=1+2+1=2+1+1=2+2 Q. The number of solutions of the equation f(n)=n , where n in N is

If a=(1+i)/sqrt2," where "i=sqrt(-1), then find the value of a^(1929) .

If i=sqrt(-1), omega is a non real cube root of unity then ((1+i)^(2 n)-(1-i)^(2 n))/((1+omega-omega^(2))(1-omega+omega^(2)))=

The value of (-1+i sqrt(3))^(48)=

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

If sum_(i=1)^(n) cos theta_(i)=n , then the value of sum_(i=1)^(n) sin theta_(i) .

Find he value of sum_(r=1)^(4n+7)\ i^r where, i=sqrt(- 1).

If I_n = int_0^(pi//4) tan^n theta d theta , then for any +ve integer n, the value of n(I_(n - 1) + I_(n + 1)) is :