Home
Class 12
MATHS
If (x+iy)^(1//3)=a+ib,"where "i=sqrt(-1)...

If `(x+iy)^(1//3)=a+ib,"where "i=sqrt(-1),then ((x)/(a)+(y)/(b))` is equal to

A

`4a^(2)b^(2)`

B

`4(a^(2)-b^(2))`

C

`4a^(2)-b^(2)`

D

`a^(2)+b^(2)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If z=(sqrt(3)-i)/2 , where i=sqrt(-1) , then (i^(101)+z^(101))^(103) equals to

If z=x-iy , z^((1)/(2)=p+iq , then : ((x)/(p)+(y)/(q))//(p^(2),q^(2)) is equal to:

Express (1+i)^(-1) ,where, i= sqrt(-1) in the form A+iB.

If z = (sqrt(3+i))/2 (where i = sqrt(-1) ) then (z^101 + i^103)^105 is equal to

If (x+iy)^(1//3) = a+ib , where a, b, x, y in R show that x/a - y/b = -2(a^(2) + b^(2)) .

int (sqrt(x))/(1+x)dx equals :

if cos (1-i) = a+ib, where a , b in R and i = sqrt(-1) , then

If sin (log_(e)i^(i))=a+ib, where i=sqrt(-1), find a and b, hence and find cos(log_(e)i^(i)) .

If z=x+i y, z^(1 / 3)=a-i b and (x)/(a)-(y)/(b)=k(a^(2)-b^(2)) then the value of k=