Home
Class 12
MATHS
The principal value of arg (z), where z=...

The principal value of `arg (z)`, where `z=1+cos((8pi)/5)+i sin((8pi)/5)` (where, `i=sqrt-1) ` is given by

A

`-(pi)/(5)`

B

`-(4pi)/(5)`

C

`(pi)/(5)`

D

`(4pi)/(5)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The principal value of cos^(-1) {1/sqrt2 ("cos"(9pi)/10 - "sin"(9pi)/10)} is :

The principal value of sin ^(-1)(tan (-(5 pi)/(4))) is

Principal value of : sin^(-1) (-sqrt3/2)+cos^(-1) (cos ((7pi)/6)) is :

If z=-1 , the principal value of arg. (z^(2//3)) is equal to :

Find the general value of log_(2)(5i), where i=sqrt(-1).

The value of cos (pi)/(5) . cos (2 pi)/(5). cos (4 pi)/(5) . cos (8 pi)/(5) is

The value of cos^(-1) ("cos" (5pi)/3)+sin^(-1) ("sin"(5pi)/3) is :

The value of the sume sum_(n=1)^(13) ( i^(n) + i^(n+1)) , where i = sqrt( -1) , equals :

Express (1+i)^(-1) ,where, i= sqrt(-1) in the form A+iB.