Home
Class 12
MATHS
If|z-i|le5andz(1)=5+3i("where",i=sqrt(-1...

If`|z-i|le5andz_(1)=5+3i("where",i=sqrt(-1),` the greatest and least values of `|iz+z_(1)|` are

A

7 and 3

B

9 and 1

C

10 and 0

D

none of these

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

1. If |z-2+i|≤ 2 then find the greatest and least value of | z|

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

If a=(1+i)/sqrt2," where "i=sqrt(-1), then find the value of a^(1929) .

If |z|ge3, then determine the least value of |z+(1)/(z)| .

If z=(-2)/(1+sqrt(3) i) , then the value of arg z is

If z=(sqrt(3)+i)/(sqrt(3)-i) , then the fundamental amplitude of z is :

If |z+4| le 3 , then the maximum value of |z+1| is

Express (1+i)^(-1) ,where, i= sqrt(-1) in the form A+iB.

If sum_(i=1)^(n)a_(i)^(2)=lambda, AAa_(i)ge0 and if greatest and least values of (sum_(i=1)^(n)a_(i))^(2) are lambda_(1) and lambda_(2) respectively, then (lambda_(1)-lambda_(2)) is

if cos (1-i) = a+ib, where a , b in R and i = sqrt(-1) , then