Home
Class 12
MATHS
The amplitude of e^(e^-(itheta)), where...

The amplitude of `e^(e^-(itheta))`, where `theta in R and i = sqrt(-1)`, is

A

`sintheta`

B

`-sintheta`

C

`e^(costheta)`

D

`e^(sintheta)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The amplitude of (-1)^(5) i is

The amplitude of (1 + i)^(5) is

if cos (1-i) = a+ib, where a , b in R and i = sqrt(-1) , then

The amplitude of (1+i)/(1+sqrt(3) i) is

-1+i sqrt(3)=r e^(i theta) then theta=

The amplitude of (1+i sqrt(3))/(sqrt(3)+i)

The amplitude of (1+sqrt(3i))/(sqrt(3)+i) is

The modulus and amplitude of (1 + i)/(1-i) are

The value of the sum sum_(n=1) ^(13) (i^(n)+i^(n+1)) , where i = sqrt( - 1) ,equals :

The value of the sume sum_(n=1)^(13) ( i^(n) + i^(n+1)) , where i = sqrt( -1) , equals :