Home
Class 12
MATHS
If z=ilog(e)(2-sqrt(3)),"where"i=sqrt(-1...

If `z=ilog_(e)(2-sqrt(3)),"where"i=sqrt(-1)` then the cos z is equal to

A

i

B

2i

C

1

D

2

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

If (3+i)(z+bar(z))-(2+i)(z-bar(z))+14i=0 , where i=sqrt(-1) , then z bar(z) is equal to

If z = (sqrt(3+i))/2 (where i = sqrt(-1) ) then (z^101 + i^103)^105 is equal to

If a=(1+i)/sqrt2," where "i=sqrt(-1), then find the value of a^(1929) .

-1+i sqrt(3)=r e^(i theta) then theta=

If z=(sqrt(3)-i)/2 , where i=sqrt(-1) , then (i^(101)+z^(101))^(103) equals to

If (x+iy)^(1//3)=a+ib,"where "i=sqrt(-1),then ((x)/(a)+(y)/(b)) is equal to

If sin (log_(e)i^(i))=a+ib, where i=sqrt(-1), find a and b, hence and find cos(log_(e)i^(i)) .

Express (1+i)^(-1) ,where, i= sqrt(-1) in the form A+iB.

If z_(1)=sqrt(3)+i sqrt(3) and z_(2)=sqrt(3)+i then the complex number ((z_(1))/(z_(2))) lies in the