Home
Class 12
MATHS
sqrt((-8-6i)) is equal to (where, i=sqrt...

`sqrt((-8-6i))` is equal to (where, `i=sqrt(-1)`

A

(a)`1pm3i`

B

(b)`pm(1-3i)`

C

(c)`pm(1+3i)`

D

(d)`pm(3-i)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(i)+sqrt((-i)) equals :

The value of sum_(n=0)^(100)i^(n!) equals (where i=sqrt(-1))

Verify that the matrix (1)/sqrt3[(1,1+i),(1-i,-1)] is unitary, where i=sqrt-1

Write the polar form of -(1)/(2)-(isqrt3)/2 (Where, i=sqrt(-1)).

If z=(sqrt(3)-i)/2 , where i=sqrt(-1) , then (i^(101)+z^(101))^(103) equals to

If z = (sqrt(3+i))/2 (where i = sqrt(-1) ) then (z^101 + i^103)^105 is equal to

If alpha and beta are the complex roots of the equation (1+i)x^(2)+(1-i)x-2i=o where i=sqrt(-1) , the value of |alpha-beta|^(2) is

if cos (1-i) = a+ib, where a , b in R and i = sqrt(-1) , then

Find the square roots of the following (i) 4+3i (ii) -5+12i (iii) 8-15i (iv) 7-24i(" where " , i=sqrt(-1))

If (3+i)(z+bar(z))-(2+i)(z-bar(z))+14i=0 , where i=sqrt(-1) , then z bar(z) is equal to