Home
Class 12
MATHS
If 0ltamp(z)ltpi,' then 'amp(z)-amp(-z)...

If `0ltamp(z)ltpi,' then 'amp(z)-amp(-z)`` is equal to

A

0

B

`2amp(z)`

C

`pi`

D

`-pi`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If arg (z)lttheta , then arg (-z)-arg (z)=

If (3+i)(z+bar(z))-(2+i)(z-bar(z))+14i=0 , where i=sqrt(-1) , then z bar(z) is equal to

If z_(1),z_(2),z_(3) are complex numbers such that : |z_(1)|=|z_(2)|=|z_(3)|=|(1)/(z_(1))+(1)/(z_(2))+(1)/(z_(3))|=1 , then |z_(1)+z_(2)+z_(3)| is equal to

If x, y, z are all different and not equal to zero and |{:(1+x,,1,,1),(1,,1+y,,1),(1,,1,,1+z):}| = 0 then the value of x^(-1) + y^(-1) + z^(-1) is equal to

Let z=x+ iy then z . bar(z)=0 if and only if

If z=-1 , the principal value of arg. (z^(2//3)) is equal to :

If z_(1) and z_(2) are two non-zero complex numbers such that |z_(1)+z_(2)|=|z_(1)|+|z_(2)| , then arg. z_(1)- arg. z_(2) equals :

If z ne 0 and Re z=0 then

If z_(1)=9y^(2)-4-10ix , z_(2)=8y^(2)+20i , where z_(1)=z_(2) , then z=x+iy is equal to

Let z_(1) and z_(2) be two roots of the equation z^(2)+az+b=0 , z being complex number, assume that the origin z_(1) and z_(2) form an equilateral triangle , then