Home
Class 12
MATHS
If i z^4+1=0, then prove that z can take...

If `i z^4+1=0,` then prove that `z` can take the value `cos""((pi)/(8))+isin""((pi)/(8))`

A

`(1+i)/(sqrt(2))`

B

`cos""((pi)/(8))+isin""((pi)/(8))`

C

`(1)/(4i)`

D

`i`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The product of the values of (cos ((pi)/(3))+i sin( (pi)/(3)))^(3 / 4) is

Find the value of tan(pi/8) ?

Find the value of tan ""pi/8.

The amplitude of "sin"(pi)/(5)+i(1-"cos"(pi)/(5)) is

What is the value of cos^(-1)(cos((2pi)/3))+sin^(-1)(sin((2pi)/3)) ?

The value of cos(sin^(-1).(pi)/(3)+cos^(-1).(pi)/(3)) is

Find the amplitude if sin.(pi)/(5)+i(1-cos.(pi)/(5))

The value of (sin (pi/3)+i cos (pi/3))^(3) is

The value of cos^(-1) ("cos" (5pi)/3)+sin^(-1) ("sin"(5pi)/3) is :

Find the value of : sin{cos("cos"^(-1)(3pi)/4)}