Home
Class 12
MATHS
If |z-(4)/(z)|=2 then the maximum value ...

If `|z-(4)/(z)|=2` then the maximum value of `|z|` is

A

(A) `sqrt(5)-1`

B

(B) `sqrt(5)+1`

C

(C) `sqrt(5)`

D

(D) 2

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z+4| le 3 , then the maximum value of |z+1| is

If |z+(4)/(z)|=2, find the maximum and minimum values of |z|.

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

If z is a complex number such that |z| ge 2 , then the minimum value of |z+(1)/(2)| .

If z is a complex number such that |z| gt 2 then the minimum value of |z+1/2|

The feasible region of an LPP is shown in the figure. If Z=11x+7y , thent he maximum value of Z occurs at

If z=(-2)/(1+sqrt(3) i) , then the value of arg z is

If |(z-2)/(z+2)|=(pi)/(6) , then the locus of z is

If Im((z-1)/(2 z+1))=-4 then the locus of z is

If |z_(1)| = 1, |z_(2)| =2, |z_(3)|=3, and |9z_(1)z_(2) + 4z_(1)z_(3)+ z_(2)z_(3)|= 12 , then find the value of |z_(1) + z_(2) + z_(3)| .