Home
Class 12
MATHS
If z=(sqrt(3)-i)/2, where i=sqrt(-1), th...

If `z=(sqrt(3)-i)/2`, where `i=sqrt(-1)`, then `(i^(101)+z^(101))^(103)` equals to

A

iz

B

z

C

`bar(z)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If z = (sqrt(3+i))/2 (where i = sqrt(-1) ) then (z^101 + i^103)^105 is equal to

If (x+iy)^(1//3)=a+ib,"where "i=sqrt(-1),then ((x)/(a)+(y)/(b)) is equal to

If a=(1+i)/sqrt2," where "i=sqrt(-1), then find the value of a^(1929) .

If z_(1)=sqrt(3)-i, z_(2)=1+i sqrt(3) , then amp (z_(1)+z_(2))=

If (3+i)(z+bar(z))-(2+i)(z-bar(z))+14i=0 , where i=sqrt(-1) , then z bar(z) is equal to

Let z=(-1+sqrt(3)i)/(2) , where i=sqrt(-1) , and r, s in {1, 2, 3} . Let P=[((-z)^(r),z^(2s)),(z^(2s),z^(r))] and I be the identity matrix of order 2. Then the total number of ordered pairs (r, s) for which P^(2)=-I is ______.

If z(2-2 sqrt(3) i)^(2)=i(sqrt(3)+i)^(4) then arg z=

If z_(1)=1+i sqrt(3) , z_(2)=1-i sqrt(3), then (z_(1)^(100)+z_(2)^(100))/(z_(1)+z_(2))=

If z=(sqrt(3))/(2)-(1)/(2) i , then (i^(93)+z^(93))^(99)=