Home
Class 12
MATHS
If arg ((z(1) -(z)/(|z|))/((z)/(|z|))) =...

If arg `((z_(1) -(z)/(|z|))/((z)/(|z|))) = (pi)/(2) and |(z)/(|z|)-z_(1)|=3`, then `|z_(1)|` equals to

A

`sqrt(3)`

B

`2sqrt(2)`

C

`sqrt(10)`

D

`sqrt(26)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If z_(1),z_(2),z_(3) are complex numbers such that : |z_(1)|=|z_(2)|=|z_(3)|=|(1)/(z_(1))+(1)/(z_(2))+(1)/(z_(3))|=1 , then |z_(1)+z_(2)+z_(3)| is equal to

If w=(z)/(z-(1)/(3)i) and |w|=1 , then z lies on

If |z_(1)|=|z_(2)| and arg (z_(1)//z_(2))=pi, then find z_(1)+z_(2) .

If |z_(1)-1|lt2,|z_(2)-2|lt1 , then |z_(1)+z_(2)|

If |z+bar(z)|+|z-bar(z)|=8 then z lies on

If |(z-2)/(z+2)|=(pi)/(6) , then the locus of z is

If |z_(1)|=|z_(2)| and arg z_(1) + arg z_(2)=0 then

If |z^(2)-1|=|z|^(2)+1 , then z lies on :

|z_(1)+z_(2)|=|z_(1)|+|z_(2)| is possible if

If |z|=1 and w=(z-1)/(z+1) (where z ne -1 ), then Re (w) is :