Home
Class 12
MATHS
If a |z-3|=min{"|z-1|,|z-5|},then Re(z) ...

If a `|z-3|=min{"|z-1|,|z-5|},then Re(z)` equals to

A

2

B

2.5

C

3.5

D

4

Text Solution

Verified by Experts

The correct Answer is:
A, D
Promotional Banner

Similar Questions

Explore conceptually related problems

If |z|=k and w=(z-k)/(z+k) , then Re (w)=

The number of complex numbers z such that |z-1|=|z+1|=|z-i| equals

If |z^(2)-1|=|z|^(2)+1 , then z lies on :

If z is a complex number such that |z|=1, z ne 1 , then the real part of |(z-1)/(z+1)| is

If |z_(1)-1|lt2,|z_(2)-2|lt1 , then |z_(1)+z_(2)|

If z_(1),z_(2),z_(3) are complex numbers such that : |z_(1)|=|z_(2)|=|z_(3)|=|(1)/(z_(1))+(1)/(z_(2))+(1)/(z_(3))|=1 , then |z_(1)+z_(2)+z_(3)| is equal to

If (3+i)(z+bar(z))-(2+i)(z-bar(z))+14i=0 , where i=sqrt(-1) , then z bar(z) is equal to

If |z_(1)|=|z_(2)|=|z_(3)|=|z_(4)| , then the points representing z_(1),z_(2),z_(3),z_(4) are :

If z_(1) and z_(2) are two non-zero complex numbers such that |z_(1)+z_(2)|=|z_(1)|+|z_(2)| , then arg. z_(1)- arg. z_(2) equals :

If |z|=1 and z ne pm 1 , then all the values of (z)/(1-z^(2)) lie on