Home
Class 12
MATHS
2^((1)/(4))*4^((1)/(8))*8^((1)/(16))*16^...

`2^((1)/(4))*4^((1)/(8))*8^((1)/(16))*16^((1)/(32))"....."` is equal to

A

`abs(z)=a`

B

`abs(z)=2a`

C

`arg(z)=pi/3`

D

`arg(z)=pi/2`

Text Solution

Verified by Experts

The correct Answer is:
A, C
Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify : (16)^((1)/(2))

The value of ( 0.2)^(logsqrt(5)((1)/(4) + ( 1)/( 8 ) + ( 1)/( 16) +"......")) is :

The value of (0.2) log _(sqrt(5)) ((1)/(4) +( 1)/( 8 ) +(1)/( 16)+"........" to oo ) is :

If Z= ((sqrt3 +1)^(3) (3i + 4)^(2))/((8+ 6i)^(2)) then |Z| is equal to

The value of 2^(1//4).4^(1//8).8^(1//16)"…………." to oo is :

If S_(n)=(1)/(6.11)+(1)/(11.16)+(1)/(16.21)+ ….. to n terms, then 6S_(n) equals

If a,b,c are non-zero real numbers, then the minimum value of the expression ((a^(8)+4a^(4)+1)(b^(4)+3b^(2)+1)(c^(2)+2c+2))/(a^(4)b^(2)) equals

The value of the product 6^(1/2)xx6^(1/4)xx^(1/8)xx6^(1/16) . . . . .oo is

Prove that 2tan^(-1)(1/2)-tan^(-1)(1/4)=tan^(-1)(13/16)

Sum of the first n terms of the series 1/2+3/4+7/8+(15)/(16)+......... is equals to (a). 2^n-n-1 (b). 1-2^(-n) (c). n+2^(-n)-1 (d). 2^n+1