Home
Class 12
MATHS
Sum of four consecutive powers of i(iota...

Sum of four consecutive powers of i(iota) is zero.
i.e.,`i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0,forall n in I.`
If `sum_(n=1)^(25)i^(n!)=a+ib, " where " i=sqrt(-1)`, then a-b, is

A

prime number

B

even number

C

composite number

D

perfect number

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(n=0)^(100)i^(n!) equals (where i=sqrt(-1))

Find he value of sum_(r=1)^(4n+7)\ i^r where, i=sqrt(- 1).

The value of sum_(k=1)^(13)(i^(n)+i^(n+1)) , where i=sqrt(-1) equals :

if cos (1-i) = a+ib, where a , b in R and i = sqrt(-1) , then

The value of the sume sum_(n=1)^(13) ( i^(n) + i^(n+1)) , where i = sqrt( -1) , equals :

1+i^(2)+i^(4)+i^(6)+... .+i^(2 n)=

The value of the sum sum_(n=1) ^(13) (i^(n)+i^(n+1)) , where i = sqrt( - 1) ,equals :

Express (1+i)^(-1) ,where, i= sqrt(-1) in the form A+iB.

The simplified form of i^(n)+i^(n+1)+i^(n+2)+i^(n+3) is