Home
Class 12
MATHS
Sum of four consecutive powers of i(iota...

Sum of four consecutive powers of i(iota) is zero.
i.e.,`i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0,forall n in I.`
If `sum_(r=4)^(100)i^(r!)+prod_(r=1)^(101)i^(r)=a+ib, " where " i=sqrt(-1)`, then a+75b, is

A

11

B

22

C

33

D

44

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

if cos (1-i) = a+ib, where a , b in R and i = sqrt(-1) , then

The value of the sume sum_(n=1)^(13) ( i^(n) + i^(n+1)) , where i = sqrt( -1) , equals :

The value of sum_(k=1)^(13)(i^(n)+i^(n+1)) , where i=sqrt(-1) equals :

Express (1+i)^(-1) ,where, i= sqrt(-1) in the form A+iB.

Find he value of sum_(r=1)^(4n+7)\ i^r where, i=sqrt(- 1).

The value of sum_(n=0)^(100)i^(n!) equals (where i=sqrt(-1))

The value of the sum sum_(n=1) ^(13) (i^(n)+i^(n+1)) , where i = sqrt( - 1) ,equals :

The simplified form of i^(n)+i^(n+1)+i^(n+2)+i^(n+3) is

sum_(i=1)^(n) sum_(j=1)^(i)sum_(k=1)^(j) 1 equals :