Home
Class 12
MATHS
The roots of the equation 8x^(3)-4x^(2...

The roots of the equation
`8x^(3)-4x^(2)-4x+1=0 " are " cos""pi/7, cos""(3pi)/7 " and " cos""(5pi)/7`.
Evaluate `sec""pi/7+sec""(3pi)/7+sec""(5pi)/7`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of cos""pi/65.cos""(2pi)/65.cos""(4pi)/65.cos""(8pi)/65.cos""(16pip)/65.cos""(32pi)/65 is :

The value of cos (pi)/(7) . cos (2 pi)/(7) . cos (4 pi)/(7) is

prove that 2 cos ""pi/13 cos "" (9pi)/( 13) + cos "" (3pi)/(13) + cos " (5pi)/( 13) =0

The value of cos (2 pi)/(7)+cos (4 pi)/(7)+cos (6 pi)/(7) is

The number of real solutions of the equation : cos^(7)x + sin^(4)x = 1 in the interval [-pi,pi] is :

2 sin ^(2) "" (3pi)/(4) + 2 cos ^(2) "" (pi)/( 4) + 2 sec ^(2) "" (pi)/(3) =10

The value of : sin""(pi/7).sin""((3pi)/14).sin""((5pi)/14).sin""((7pi)/14) is :

cos ((3pi)/( 4) + x) - cos((3pi)/( 4) -x) =- sqrt2 sin x