Home
Class 12
MATHS
If |z|=1 and z ne pm 1, then all the val...

If `|z|=1` and `z ne pm 1`, then all the values of `(z)/(1-z^(2))` lie on

A

a line not passing through the origin

B

`abs(z)=sqrt(2)`

C

the X-axis

D

the Y-axis

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If |z+4| le 3 , then the maximum value of |z+1| is

If z is a complex number such that |z|=1, z ne 1 , then the real part of |(z-1)/(z+1)| is

If z=-1 , the principal value of arg. (z^(2//3)) is equal to :

If |z|ge3, then determine the least value of |z+(1)/(z)| .

For all complex numbers z_(1), z_(2) satisfying |z_(1)|=12 and |z_(2)-3-4 i|=5 , the minimum value of |z_(1)-z_(2)| is

If z=(-2)/(1+sqrt(3) i) , then the value of arg z is

If z^(2)+z+1=0 , where z is a complex number, then the value of (z+(1)/(z))^(2)+(z^(2)+(1)/(z^(2)))^(2)+(z^(3)+(1)/(z^(3)))^(2)+....+(z^(6)+(1)/(z^(6)))^(2) is

If z=1+i then the multiplicative inverse of z^(2) is

If z ne 0 and Re z=0 then

If z is a complex number such that |z| ge 2 , then the minimum value of |z+(1)/(2)| .