Home
Class 12
MATHS
Let z=cos theta+isintheta. Then the valu...

Let `z=cos theta+isintheta`. Then the value of `sum_(m-1)^(15)Im(z^(2m)-1)` at `theta=2^(@)` is

A

`1/(sin2^(@))`

B

`1/(3sin2^(@))`

C

`1/(2sin2^(@))`

D

`1/(4sin2^(@))`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If sum_(i=1)^(n) cos theta_(i)=n , then the value of sum_(i=1)^(n) sin theta_(i) .

(1+cos 2 theta)/(sin 2 theta)=cot theta

If sin theta =cos theta ,then the value of 2tan theta+cos^(2)theta is:

If n is an integer and z=cos theta+i sin theta , then (z^(2 n)-1)/(z^(2 n)+1)=

The general value of theta which satisfies the equation (cos theta + isin theta) (cos 3theta+ isin3theta)…[cos(2n-1)theta+isin(2n-1)theta]=1 is

If sin theta+cos theta=1 then the value of sin 2 theta is equal to

The value of lim_(theta to 0)(1-cos 4theta)/(1-cos 6 theta) is

If Sin theta = 4/5 and Cos theta=3/5 find the value of Sin^(2)theta+Cos^(2) theta

If 2 cos theta =1 and theta Is an Acute then the value of ' theta ' is:

Prove that (sin theta+cos theta)/(sin theta- cos theta) + (sin theta - cos theta)/(sin theta + cos theta) = ( 2sec^(2) theta)/(tan^(2) theta -1) .